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ABSTRACT 

The backscattering cross section and pattern of wires 2 to 18. 5 

wavelengths long were theoretically computed and plotted.     Assuming a 

spherically random orientation of the wire,  we present the average cross 

sections and probability distributions for various lengths and radii of the 

wire. 
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Introduction 

The problem of the scattering of electromagnetic waves from a wire 

has received considerable attention.    Most of the previous works   '     have 

a drawback in the sense that their solutions are limited to wires not much 

longer than one wavelength.    Recently,   a high frequency asymptotic 
3 

solution for scattering by a wire has been published by Ufimtsev   ,   and 

his solution is particularly suitable for computation of scattering by wires 

long compared to the wavelength. 

In order to gain some quantitative understanding of the scattering 

properties and statistics of a long wire,  numerical analysis based on 

Ufimtsev1 s solution is carried out.    In this report the results of comput- 

tations are summarized,   in particular for lengths of wire from 2 to 18. 5 

wavelengths. 

Basic Theory 

Fig.   1.    Geometry of wire . 



Consider a plane electromagnetic wave incident upon a perfectly 

conducting wire of length   L   and radius   a   at angle    9 .    The angle between 

the wire and the electric vector is   (p  .     The physical picture of formation 

of the scattered fields is explained in the following way:   when the incident 

wave hits either end of the wire,  the incident wave is scattered,   and at 

the same time a traveling wave is launched along the wire.    When this 

traveling wave reaches the other end of the wire,   a portion of its energy is 

diffracted and reaches the receiver,   and the remainder of the traveling 

wave is reflected and forms a secondary traveling wave.    Such phenomena 

continue with successively smaller amplitudes for the higher order 

traveling waves.    Summation of contributions by various diffracted waves 

yields the desired solution for back scattering by the wire. 

The analytical solution based on this physical picture was obtained 
3 

by Ufimtsev    and is given in the Appendix.     The solution is valid when 

—    << 1    and   ka <   0. 2 .    If the wire is not of circular cross section,  the 
L 
solution and results given in this note are still valid if we use an equiv- 

4 
alent radius   .    For a strip the equivalent radius is a quarter of width of 

the strip,  and for a cylinder with elliptic cross section the equivalent 

radius is the average of the semi-major and semi-minor axes. 

Numerical Results for the Scattering Cross Section 

Using the theoretical solution given in the Appendix,   the scattering 

cross sections for various lengths and radii of the wire are computed. 

Fig.   2 presents the broadside cross section   (6 = TT/2, <p = o)   as a function 



of length for three values of   a/\(0.01,   0.001,   and 0.0001).     Note that 

resonances occur near   L/\ = n +  1/2 (n = 0,   1,   2,   - - -).     These are due 

to the fact that the phases of all traveling waves are the same at these 

lengths and they add up coherently.    However,  the resonant peaks diminish 

as the length and/or the radius increases. 

Fig.   3 to Fig.   8 presents scattering patterns    (cp - o)    for   L/\ =  2, 

3,   5,   8,   12 and 18.    Near broadside,  the shape of the angular dependence 

i                      •             i i      ^i      e                    r sin (kL cos   6)  -,2     .2. ,.        , can be approximated by the function    |_ :  J      sm     6  as predicted 
. kL cos  6 

by Chu's approximate solution    for a long wire.    However,   Chu's solution 

fails to predict large backscattering returns (so-called endfire lobes) at 

oblique incidence.    It is interesting to note that the maximum cross section 

does not always occur at broadside.     This is particularly true when the 

wire is very thin.     The scattering cross section near broadside depends 

logarithmically upon the ratio   a/X ,    but the cross section for endfire lobes 

is almost independent of the thickness of the wire.    Whenever the scattering 

-2 -3 cross section and pattern for   a/\ =10        and   10        are the same only 

- 2 those for   a/\ =  10"      are explicitly shown in the figures. 

Statistics 

When a wire is randomly oriented (e. g.   in a chaff cloud),   the 

statistical properties of the cross section are of interest.    For a spher- 

ically random orientation,  the average cross section,     a,    is defined by 

the following equation: 



,        2TT TT 

a -   —  J       d<p J      d 6 sin e • a ( e ,cp) (1) 
4TT      O O 

Fig.   9 presents computed values of average cross sections versus length 

for three values of the radius.    As length increases,   —-   does not increase 

as rapidly as the broadside cross section shown in Fig.   2.    Note that the 

resonances of the average cross section occur at every half wavelength. 

Another interesting statistical property of a randomly oriented 

wire is the probability distribution   P(a>a.) .    The procedure of compu- 

tation is as follows:   the range of aspect angle   ( 8 )   from 0    to 90    are 

divided such that a sufficient number of sample points are taken with 

uniform increments of   A (cos  8) .    The array of the computed scattering 

cross sections at various aspect angles are multiplied by a second array 

of eleven values of   cos    q)   where the range of  (p   is between 0    and 90 

at an interval of 9   .     The resulting matrix represents a sufficient number 

of sample values of the cross sections for a spherically random orientation 

of the wire.    Each sample value normalized with respect to the broadside 

cross section is then called the XX array in the computer program.    This 

array is ordered from the lowest value to the highest.    Finally,  the 

probability distribution   P( a>0.)   at each   Xi [= a. / a(9= Tj/2,cp = o)   ] is 

found by computing the percentage of samples whose normalized cross 

sections are greater than the given   Xi. 



Fig.   10 presents probability distributions for   L/X =  2,   3,   5,   8,   12 

and 18 for   a/\ =  10"'   .    The probability distribution for a half-wave 

dipole   (L/\ = 0. 5)   was theoretically obtained by Borison   ,   and the result 

is also shown in Fig.   10.     To show the dependence of   P( 0 > o . )    on 

- 2 -3 
thickness of wire,  probability distributions for   a/X =  10"      and   10 are 

shown in Fig.   11    (for L/X =  2)    and Fig.   12   (for L/X = 3).    Since the 

P(   ' > a.)   for   a/X = 10"      is almost identical to that for   a/X = 10  '   , 

it is not included in the figures.     The probability distribution depends weakly 

on the radius of the wire,  because the endfire cross sections are almost 

independent of the radius of the wire as shown in Fig.   3 to Fig.   8. 
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APPENDIX 

UFIMTSEV'S SOLUTION 

Computation for scattering by a wire shown in Fig.   1  is based on 

Ufimtsev's solution.    It is given by the following equations: 

L Case for    6  /   TT/2 

a(e,<p)A2 =      ±S2UL1 IS(°>12        (A-i) 
nsin^e.sin^Z^lM/^^Q)!4 

where 

S(9) =  - sin4(l).in  [ L-   ] 
2 yka sinz( 9/2) 

ikL2 cos  9 4.  e >    ,     r i +  e . cos   ( — ) • in  L- 
2 yka cos2( £. ) 

+ eikL(1+ COS 9).2.{sin4(^)  .f .in [ i _   ] 
Yka sin (—) 

2 

cos4(l)  .Y .  in  [ i g— 
2 Yka cos (— ) 

2 



+ cos  6  .in(-i-).[eikL2( Y   )2 +  e
ikL2(1+ COS 9)(Y  )2 

D Yka + 

-   2eikL(3+COs9).Y_.Y.f+   1 (A-2) 

Y =  1. 781 

y _ in- 2in(Yka)  (A-3) 
„   / i2kL  \        rnin     -i2kL in =—K      - E(2kL) e 

Y± = 
in- in(Y q±) 

2kLq^ 
fn/i2kL    \      T(               ^ 

z       kL 

i.e    q±   k2a2 

Wa2^          U2a2   1 

and 

(A-4) 

q± = ik±L      (1  T cos   9) (A-5) 

y y 
E(y) =    J"        COS t    dt+ i    f       sin t   dt - i n/2 (A-6) 

00 t o 

D=  1  - Y2 • ei2kL (A-7) 



II. Case for    6= rr/2 

a (6= n/2.0/ 2   =   ^J£. . |2| 
n 

(A-8) 

where 

ikL 

2A 
ikL   (")2-E<2kL)    + 

A  - 1/2 
2A2 A2 

+ 4.   [I   - In(J^L)   ].Y.eikL 

yka A2 

9 (V         „ i   i    x    r   i2kL     w   i3kL i +   2 -—'.—   .  in(  ) • [ e -  ¥ e 
DA2 Yka 

(A-9) 

A = ln(—) 
yka 

(A-10) 

and 

T = Y± ( e = TT /2) (A-ll) 
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Fig.   3.    Pattern for L,/x =  2. 

Fig.  4.    Pattern for L/X =   4, 
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Fig.  5.    Pattern for L/\ =   5. 
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Fig.  6.    Pattern for L/\ =  8. 
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Fig.  7.    Pattern for L./ \ =  12. 
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Fig. 8.    Pattern for L/X =   18. 
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Fig.   10.    Probability distributions vs. length, 
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Fig.  11.    Probability distributions for two radii and L/ \ = 2. 

17 



1 0 

b 
A 

0.01 

Fig.   12.    Probability distributions for two radii and L/ X = 3, 
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